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Abstract
The difficulties arising in the investigation of finite-size scaling in
d-dimensional O(n) systems with strong anisotropy and/or long-range
interaction, decaying with the interparticle distance r as r−d−σ (0 < σ � 2),
are discussed. Some integral representations aiming at the simplification of
the investigations are presented for the classical and quantum lattice sums
that take place in the theory. Special attention is paid to a more general
form allowing to treat both cases on an equal footing and in addition cases
with strong anisotropic interactions and different geometries. The analysis is
simplified further by expressing this general form in terms of a generalization
of the Mittag–Leffler special functions. This turned out to be very useful for the
extraction of asymptotic finite-size behaviours of the thermodynamic functions.

PACS numbers: 05.70.Fh, 05.70.Jk, 02.30.Gp

1. Introduction

The standard finite-size scaling (FSS) theory is usually formulated in terms of only one
reference length—the bulk correlation length ξ . For a system with finite linear size L, the
main statements of the theory are the following.

(i) The only relevant variable in terms of which the properties of the finite system depend on
the neighbourhood of the bulk critical parameter (the temperature in classical systems and
the corresponding quantum parameter in quantum systems) driving the phase transition
is L/ξ .

(ii) The rounding of the thermodynamic function exhibiting singularities at the bulk phase
transition in a given finite system sets in when L/ξ = O(1).
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The tacit assumption is that all other reference lengths are irrelevant and will lead only
to corrections towards the above picture. Moreover, the crucial point in the finite-size theory
is that we always assume that the finite-size linear L of systems under consideration and the
correlation length ξ are large in the microscopic scale. This means L � a and ξ � a, where
a is the lattice spacing. For a comprehensive recent review on this subject and other studies
related to it see [1]

To investigate the FSS properties of systems with long-range (LR) interaction decaying at
large distances r as r−d−σ , where d is the space dimensionality and 0 < σ � 2 is a parameter
controlling the range of the interaction, one needs to extract the finite-size effects from the
d-dimensional lattice sum:

W
γ

d,σ (t, L) =
∑

q

1

(t + |q|σ )γ
, (1.1)

where due to the periodic boundary conditions q is a discrete vector with components
qi = 2πni/L (ni = 0,±1,±2, . . .), i = 1, . . . , d. L is the size of the box confining the
system and t is a parameter measuring the distance to the bulk critical point. Here we will not
comment on the restrictions on d, σ and γ , nor will we dwell on the problem of convergence
of (1.1); these details should be clear from the context. Note that σ = 2 corresponds formally
to the case of short-range (SR) interaction [2]. γ is a parameter allowing to treat classical
(γ = 1) and quantum (γ = 1/2) systems on an equal footing. Higher values of γ appear in
the investigation of finite-size systems to the one loop order in the field theoretical approach.
For a recent review on the critical properties of systems with LR interaction see [3, 4].

An other reason for considering W
γ

d,σ (t, L) is, as we will see below, the direct mapping
between the lattice sum (1.1) and some lattice sums in combinations with integrals that appear
in the theory of systems with strong anisotropic LR interaction of the asymptotic form (see
for example [5–9])

J (q) � J (0) + a‖|q‖|ρ + a⊥|q⊥|σ , (1.2)

where the first r directions (called ‘parallel’ and denoted by the subscript ‖) are extended to
infinity and the remaining s directions (called ‘transverse’ and denoted by ⊥) are kept finite,
with r + s = d and a⊥, a‖ are metric factors and ρ, σ > 0. Let us note that there is a limited
number of papers that consider FSS assumptions on a microscopic models [5, 6]. It seems that
the considerations are mainly on phenomenological level or via computer simulations (see for
example [7–9]) because of the problems emerging in analytical treatments.

The study of the difference between the d-dimensional sum (1.1) at large sizes L and its
limiting integrals is crucial in the derivation of finite-size effects. In the particular cases γ = 1
or 1/2 to solve this problem several approaches have been proposed [5, 10–17]. Among them
the most universal one is that based on the Poisson summation formula [5, 11, 12, 15, 17, 18].
The aim of this approach1 is to factorize the d-dimensional sum in the rhs of equation (1.1)
and to reduce it to a one-dimensional effective problem. The term |q|σ in conjunction with γ

to be arbitrary in the interval 0 < γ < ∞ causes peculiar mathematical problems concerning
the evaluation of the lattice sums over q. The aim of the present study is to generalize the
previous investigations for arbitrary 0 < γ < ∞. By virtue of the relation

W
γ +n

d,σ (t, L) = (−1)n

γ (γ + 1) · · · (γ + n − 1)

dn

dnt
W

γ

d,σ (t, L), (1.3)

one can see that it is formally sufficient to consider only the case 0 < γ � 1. Let us first
consider separately the classical and the quantum case.

1 This approach originated from an earlier work of Brézin [19] on FSS in systems with short-range interaction.
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1.1. Classical case (γ = 1)

In the case of classical systems with SR interaction, corresponding to γ = 1 and σ = 2, the
following substitution is used as an indispensable ingredient for the FSS calculations (see, e.g.
[1]):

W 1
d,2(t, L) =

∫ ∞

0
dx exp(−tx)

[∑
q

exp(−q2x)

]d

, (1.4)

where q is the one-dimensional discrete vector. This is the so-called Schwinger parametric
representation. The analytic properties of the function

∑
q exp(−q2x) are very well known,

since it is nothing but the reduced Jacobi θ3 function. The aim of the above procedure is
two-fold: (i) to exponentiate the summand and to reduce the d-dimensional sum to a one-
dimensional sum with well-known analytic properties, and (ii) to give the dimensionality d
the status of a continuous variable.

In the presence of qσ term, it is not so easy to realize this procedure. The problem
has been solved by suggesting different generalizations [6, 11, 14, 16, 17] of the Schwinger
representation (1.4) that lead to different obstacles.

In order to preserve the possibility for further analytical consideration based on the
properties of the reduced Jacobi θ3 function in [11] the following representation has been
used:

W 1
d,σ (t, L) = t

2−σ
σ

∫ ∞

0
dx Qσ (t2/σ x)

[∑
q

exp(−q2x)

]d

. (1.5)

The price one pays for this is that instead of the simple exponent in the integrand of (1.4), the
function Qσ(t) appears

Qσ(x) =
∫ ∞

0
dy exp(−xy)Q̃σ (y), (1.6a)

where

Q̃σ (y) = 1

π

sin
(

σ
2 π

)
y

σ
2

1 + 2y
σ
2 cos

(
σ
2 π

)
+ yσ

, 0 < σ < 2. (1.6b)

First the connection between Qσ(x) and the Mittag–Leffler type functions in the theory of
FSS was established in [12]. This reads

Qσ(x) = x
σ
2 −1Eσ

2 , σ
2

(−x
σ
2
)
, (1.7)

where Eα,β(z) are entire functions of the Mittag–Leffler type defined by the power series
[20, 21]

Eα,β(z) =
∞∑

k=0

zk

	(αk + β)
, α, β ∈ C, Re(α) > 0. (1.8)

This shows that the study of the finite-size behaviour of the lattice sum

W 1
d,σ (t, L) =

∫ ∞

0
dx x

σ
2 −1Eσ

2 , σ
2

(−tx
σ
2
) [∑

q

exp(−q2x)

]d

(1.9)

is a direct consequence of the analytical properties of Eα,β(z) [12].
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1.2. Pure quantum case (γ = 1/2)

For the investigation of the FSS at zero temperature when the phase transition is driven by a
quantum parameter, in (1.1) we have γ = 1

2 . Then the following integral representation is
obtained:

W
1
2

d,σ (t, L) = 2

π

∫ ∞

0
dp

∑
q

1

t + p2 + |q|σ . (1.10)

The auxiliary variable p2 adds an effective extra dimension. Indeed, the pure quantum system
corresponds to a d +1-dimensional anisotropic classical system with the geometry of a cylinder
Ld × ∞. Recall that the bulk critical behaviour (e.g. critical exponents) of a pure quantum
system is equivalent to a d + z- (z = σ

2 dynamic critical exponent) dimensional classical
system (this is the so-called classical to quantum crossover).

On the other hand, in the spirit of relation (1.9) the following modification has been
proposed [15]:

W
1
2

d,σ (t, L) =
∫ ∞

0
dx x

σ
4 −1Gσ

2 , σ
4

(−tx
σ
2
) [∑

q

exp(−q2x)

]d

. (1.11)

The new functions Gα,β(z) are defined by the power series [15]

Gα,β(z) = 1√
π

∞∑
k=0

	
(
k + 1

2

)
	(αk + β)

zk

k!
, α, β ∈ C, Re(α) > 0. (1.12)

Some results on the analytic behaviour of these functions are presented in [5]. In the particular
case α = σ

2 , β = σ
4 the following identity [4]:

Gσ
2 , σ

4
(−z) = 2

π

∫ ∞

0
Eσ

2 , σ
2
(−(z + p2)) dp, (1.13)

can be obtained from equation (1.10) and the relation of its lhs and rhs with the functions
Gσ

2 , σ
4
(z) and Eσ

2 , σ
2
(z), respectively.

1.3. Anisotropic case (0 < γ < 1)

In this case, instead of (1.10) we propose the following identity that can be obtained (see
appendix A) after some algebra (0 < γ < 1):

W
γ

d,σ (t, L) = 1

(1 − γ )	(γ )	(1 − γ )

∫ ∞

0
dp

∑
q

1

t + p
1

1−γ + |q|σ
. (1.14)

Equation (1.14) generalizes the result (1.10) corresponding to the pure quantum case.

Here the auxiliary variable p
1

1−γ acts effectively as an anisotropic extra dimension that
generates additional mathematical difficulties. In the denominator of the summand in the rhs of
equation (1.14), one can easily recognize the form of the anisotropic interaction (1.2) with
s = d, r = 1 and ρ = 1/(1 − γ ).

In this paper, we present new representation formulae for the lattice sums defined in
equation (1.1) relevant to the investigations of the finite-size scaling properties of a large class
of systems: classical, quantum and systems with strong anisotropy. Following the lines of
consideration mentioned for the particular cases of the previous subsections 1.1 and 1.2, our
aim here is to present functions depending on the three parameters α, β and γ that can play
the same role as the functions Eα,β(z) and Gα,β(z). The mathematical properties of these
functions will be discussed in the next section and some applications will be given.
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2. Generalized Mittag–Leffler functions

The following generalization of the Mittag–Leffler functions is defined by the power series
[22]:

E
γ

α,β(z) =
∞∑

k=0

(γ )k

	(αk + β)

zk

k!
, α, β, γ ∈ C, Re(α) > 0, (2.1)

are of a significant interest. Here

(γ )0 = 1, (γ )k = γ (γ + 1)(γ + 2) · · · (γ + k − 1) = 	(k + γ )

	(γ )
, k = 1, 2, . . . .

(2.2)

These functions are named after Mittag–Leffler who first introduced the particular case with
β = γ = 1. Recently, the interest in this type of functions has grown up by their applications
in some evolution problems and by their various generalizations appearing in the solution
of differential and integral equations. For some mathematical applications see [23, 24] and
references therein.

In the present study, we will show that these functions can play an intrinsic role in the
theory of FSS. Remark that the generalized functions (2.1) reduce to the Gα,β given by (1.12)
in the particular case γ = 1

2 .
One of the most striking properties of these functions is that they obey the following

identity:

(1 + z)−γ =
∫ ∞

0
dx e−xxβ−1E

γ

α,β(−xαz), Re(γ ), Re(β) > 0, |z| < 1, (2.3)

which is obtained by means of term-by-term integration of series (2.1). As we will show
identity (2.3) lies in the basis of the mathematical investigation of FSS in systems with LR
interaction. If we set in identity (2.3) z = y−α, y > 0, and x = ty, we will obtain the Laplace
transform

yαγ−β

(1 + yα)γ
=

∫ ∞

0
dt e−yt tβ−1E

γ

α,β(−tα) (2.4)

from which we derive a new identity by setting β = αγ :

1

(1 + yα)γ
=

∫ ∞

0
dt e−yt tαγ−1Eγ

α,αγ (−tα). (2.5)

With the help of the above identity one immediately obtains the relation

W
γ

d,σ (t, L) =
∫ ∞

0
dx xγ σ

2 −1E
γ
σ
2 ,γ σ

2

(−tx
σ
2
) [∑

q

exp(−q2x)

]d

, Re(γ ) > 0, (2.6)

which is the quested generalization of (1.9) and (1.11). Now it is easy to obtain from
equations (1.9), (1.14) and (2.6) the generalization of the integral relation (1.13):

E
γ
σ
2 ,γ σ

2
(−z) = 1

(1 − γ )	(γ )	(1 − γ )

∫ ∞

0
E1

σ
2 , σ

2

(−(
z + p

1
1−γ

))
dp, 0 < γ < 1. (2.7)

Note that E1
σ
2 , σ

2
:= Eσ

2 , σ
2
. The asymptotic expansion for z � 1 of the generalized Mittag–

Leffler functions E
γ

α,β(z) can be obtained from (see appendix B)

E
γ

α,β(−z) =
∞∑

k=0

(−1)k
(γ )k

	[β − α(k + γ )]

z−(k+γ )

k!
, |z| > 1. (2.8)
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In the particular case β = αγ , relevant to the physical situations we are discussing here,
equation (2.8) reduces to

Eγ
α,αγ (−x) � −γ

x−(1+γ )

	(−α)
, x � 1, (2.9)

where only the leading term is accounted for.
In the following section, we will discuss some applications and relations to previous

results obtained in the framework of the FSS investigations in the classical and the quantum
cases.

3. Finite-size computations

For FSS computations of O(n) systems one needs the large-L behaviour of normalized lattice
sums defined by

W
γ

d,σ (t, L) = 1

Ld

∑
q �=0

1

(t + |q|σ )γ
, (3.1)

where γ is relevant to different physical cases. Indeed for integer γ we have classical systems,
while for half-integers we have the quantum situation and for γ < 1 systems with geometry
Lr × ∞s and strong anisotropy of type (1.2). The last follows directly from the identity
(compare with (1.14)):∫ ∞

0
dp

∑
q

1

t + pρ + |q|σ =
	

(
1 − 1

ρ

)
	

(
1
ρ

)
ρ

W
1− 1

ρ

d,σ (t, L), ρ > 1. (3.2)

The method we use here to extract the large-L behaviour of (3.1) is based upon identity
(2.6). After rearrangement of (3.1) we obtain

W
γ

d,σ (t, L) = Lγσ−d

(2π)γσ

∫ ∞

0
dx xγ σ

2 −1E
γ
σ
2 ,γ σ

2

(
− tLσ

(2π)σ
x

σ
2

)
[Ad(x) − 1], (3.3a)

where

A(x) ≡
+∞∑

n=−∞
e−xn2

. (3.3b)

For large x,A(x) − 1 decreases exponentially and the integral on the right-hand side of
equation (3.3a) converges at infinity. For x → 0, the Poisson transformation formula

A(x) =
√

π

x
A

(
π2

x

)
(3.4)

shows that A(x) converges.
For small x, the integral on the right-hand side of equation (3.3a) has an ultraviolet

divergence for Re(d) > γσ . So, an analytic continuation in d is required to give a meaning
to the integral. Adding and subtracting the small behaviour of the function A(x), we get after
straightforward algebra,

W
γ

d,σ (t, L) = L−d+γ σ
[
D

γ

d,σ (tLσ )
d−γ σ

σ + F
γ

d,σ (tLσ )
]
, (3.5a)

where the constant

D
γ

d,σ = 2

σ

1

(4π)
d
2

	
(
γ − d

σ

)
	

(
d
σ

)
	(γ )	

(
d
2

) (3.5b)
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and the functions

F
γ

d,σ (y) = 1

(2π)γσ

∫ ∞

0
dx xγ σ

2 −1E
γ
σ
2 ,γ σ

2

(
− y

(2π)σ
x

σ
2

) [
Ad(x) − 1 −

(π

x

) d
2

]
. (3.5c)

The first term in (3.5a) is the bulk contribution (it is L-independent) and the second term is the
corresponding finite-size correction. The form (3.5a) is suitable for the investigation of FSS
in the vicinity of the critical point i.e. t � 0. The function F

γ

d,σ (y) enters in the expressions
for the scaling functions of various thermodynamic observables. The dependence on the linear
size L of the system is included in the scaling variable y. The behaviour of any thermodynamic
function is tightly related to the asymptotic behaviour of F

γ

d,σ (y), which in turn depend upon
that of the Mittag–Leffler functions. For detailed discussions of different models with the
particular values γ = 1 and γ = 1

2 , the reader is invited to consult references [1, 3, 5,
15, 18], where the finite-size scaling predictions are investigated in great detail. Let us note
that at this level, the anisotropy of the scaling behaviour in equation (3.5a) only appears
through the parameter γ .

By setting t = 0 in (3.5a), we obtain an expression for the finite-size shift of the bulk
critical parameter driving the phase transition. This is proportional to F

γ

d,σ (0)L−λ, where
λ = d − γ σ is the shift critical exponent for the specific value of γ . The coefficient F

γ

d,σ (0)

can be evaluated analytically as well as numerically for different values of the free parameters
d, σ and γ using the method developed in [25].

According to the standard FSS, we must have λ = 1/ν, where 1/ν is the critical exponent
measuring the divergence of the correlation length. The value of ν depends on the concrete
microscopic model. For illustration, in the particular case of the symmetric O(n) model in the
limit n → ∞, one can consider two cases: classical and quantum, where ν = 1/(d − σ) and
ν = 1/(d − σ/2), respectively. In both cases our result confirms the FSS theory predictions
(see, e.g. [1]). Furthermore in order to make contact with the case of strong anisotropy of
[6, 26] the effective dimensionality D = 2d/σ + 2/ρ must be introduced. It determines the
conditions for the phase transition to take place, if the anisotropic LR has the asymptotic
form (1.2) with s = 1, r = d. In this case ν = 2/(σ (D − 2)) and again we have agreement
with the FSS theory, provided 2 < D < 4. Moreover, introducing the effective dimension
D(γ ) = 2d/σ + 2(1 − γ ) we can consider a more general classical system that includes
γ = 1, 1/2, (1 − 1/ρ) as particular cases.

The finite-size correction to the bulk critical behaviour (of e.g. susceptibility) can be
extracted from the asymptotic form of the functions F

γ

d,σ (y) defined by (3.5c) at large argument.
This in turn can be obtained with the help of expansion (2.9). After some algebra we get (see
appendix C)

F
γ

d,2(y) � −y−γ +

[
d

2γ (2π)
d−1

2 	(γ )

]
y

1
4 (d−2γ−1)e−√

y (3.6a)

for σ = 2, i.e. for the SR case and

F
γ

d,σ (y) � −y−γ +


2σ γ π− d

2
	

(
d+σ

2

)
	

(− σ
2

) ∑
l�=0

1

|l|d+σ


 y−(1+γ ) (3.6b)

for 0 < σ < 2, corresponding to the LR case. Equations (3.6) generalize equations (3.29) of
[18] obtained for the particular case γ = 1.

Equations (3.6) reflect the fact that for systems with LR interaction the finite-size
corrections fall-off in power law rather than exponential as it is the case for their counterparts
with SR interaction. These results are generalizations of those obtained previously in the case
of classical systems [12, 13, 17, 18] and those obtained for their quantum counterparts [5, 15].
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The former cases can be obtained by using integer values for γ and the latter ones by using
half-integer values.

4. Conclusion

We presented some mathematical results on the investigation of the FSS in O(n) systems based
on the generalized Mittag–Leffler functions (2.1) that have well-known analytic properties.
Mainly two types of systems are of particular interest.

(i) The fully finite d-dimensional systems with LR interaction decaying algebraically with
the interparticle distance.

This is the case with 0 < σ < 2 in (1.1). A special emphasis on the mathematical
difficulties arising in the investigation of the FSS both in the classical (with γ = 1 in (1.1))
and quantum cases (with γ = 1/2 in (1.1)) is discussed. The used techniques allow the
investigations to be simplified and express the results for various thermodynamic quantities
in terms of simple, with well-defined analytic properties, mathematical functions. An
integral representation (2.6) to deal with such difficulties, at least asymptotically, is
presented. It turned out that both cases can be treated on an equal footing.

(ii) The classical system with mixed geometries with both finite and infinite sizes and strongly
anisotropic interaction of type (1.2).

Such type of systems are considered in [6], where 0 < ρ, σ < 2 and γ = 1 − 1/ρ.
An other interesting case is the m-fold Lifshitz point that is characterized by an instability
associated with the absence of quadratic terms in the form q2

α in the effective Landau–
Ginzburg–Wilson Hamiltonian for all α = 1, 2, . . . , n < d [7, 27]. Then in (1.2) one
must set ρ = 4, σ = 2 and γ = 3/4. This gives a simpler way of solving such problems
using generalized Mittag–Leffler functions. It is based on the established mapping (3.2)
to a fully finite-size system with specific 0 < γ < 1 in (1.1).

In conclusion, our considerations establish that we can study finite-size scaling behaviour
of classical systems, quantum systems and systems with strong anisotropy confined in mixed
geometry ∞×Ld , in the framework of a fully finite anisotropic system with a classical critical
behaviour. This is achieved in a unified fashion, varying the superscript γ in the generalized
Mittag–Leffler functions.
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Appendix A. Derivation of equation (1.14)

We have the relation
1

µ
p−α/µ	

(
α

µ

)
=

∫ ∞

0
xα−1 e−pxµ

dx, µ, Re(α), Re(p) > 0. (A.1)

or if α/µ = γ

p−γ = µ

	(γ )

∫ ∞

0
x−(1−γµ) e−pxµ

dx. (A.2)

Using twice (A.2) we get

1

pγ
= µ

	(γ )

ν

	(1 − γµ)

∫ ∞

0
dx

∫ ∞

0
dt e−pxµ

e−xtν t (1−γµ)ν−1. (A.3)
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Now on the free parameters µ and ν, we impose the conditions

(1 − γµ)ν − 1 = 0, µ = 1, (A.4)

and obtain the identity (γ < 1)

1

pγ
= 1

(1 − γ )	(γ )	(1 − γ )

∫ ∞

0
dt

1

p + t
1

1−γ

. (A.5)

Equation (1.14) immediately follows from the above identity.

Appendix B. Derivation of the asymptotic behaviour of the generalized
Mittag–Leffler functions (2.8)

An integral representation of the generalized Mittag–Leffler functions E
γ

α,β(z) can be obtained
with the aid of the Henkel integral for the inverse gamma function

1

	(z)
= 1

2π i

∫
C

euu−z dz, (B.1)

where the integration contour C is a loop which starts and ends at x = −∞ and encircles the
origin in the positive sense: −π � arg z � π on C [28]. This enables to get the result

E
γ

α,β(z) = 1

2iπα

∫
C

dv
ev1/α

vγ−1+(1−β)/α

(v − z)γ
. (B.2)

In the following we will investigate the asymptotic behaviour of the generalized Mittag–Leffler
functions at large argument, following the method used in [5]. This may be performed with
the aid of the series [29]

(x + z)−γ = x−γ

∞∑
k=0

(−1)k
(γ )k

k!

( z

x

)k

,

∣∣∣ z
x

∣∣∣ � 1; z

x
�= −1. (B.3)

After substitution of the latter equation into the integral representation (B.2) one obtains (2.8).

Appendix C. Large asymptotic behaviour of F γ
d↪σ(y) from (3.5c)

To obtain the large y asymptotic behaviour (3.6) of the functions F
γ

d,σ (y) we rewrite (3.5c),
with the help of identity (3.4), in the form

F
γ

d,σ (y) = π
d
2

(2π)γσ

∫ ∞

0
dx xγ σ

2 − d
2 −1E

γ
σ
2 ,γ σ

2

(
−y

x
σ
2

(2π)σ

)[
Ad

(
π2

x

)
− 1

]

− 1

(2π)γσ

∫ ∞

0
dx xγ σ

2 −1E
γ
σ
2 ,γ σ

2

(
−y

x
σ
2

(2π)σ

)
. (C.1)

Using the identity∫ ∞

0
dx xγ σ

2 −1E
γ
σ
2 ,γ σ

2

(−x
σ
2
) = 1, σ > 0, (C.2)

from the second term of equation (C.1) we obtain the first terms of equations (3.6).
Further, taking into account the asymptotic behaviour (2.8) of the functions E

γ

α,β(z) and
after subsequent integration in the first term of equation (C.1), we obtain finally the asymptotic
behaviour given by equations (3.6).
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